Extending Propensity Scores: Polychotomous Outcomes, Sample Selection, and Incorrect Model Specification

Michael A. Posner Boston University School of Public Health mposner@bu.edu

Case Western Reserve University Center for Health Care Research and Policy October 22, 2004

Outline

- Observational studies the good and the bad
- Propensity scores an overview
- Extending propensity score methods
 - Polychotomous outcomes
 - $\ Weighted \ regression \ instead \ of \ sub-sampling$

2

- The errors of ignoring selection bias – Propensity score simulations
- Future work

Observational Studies

- <u>Observational Study</u>: non-random assignment to treatment
- Why use observational studies?
 - Randomized trials impossible (ethics, design)
 - Randomized trials produce biased results
 - Prevalence of administrative data
- ...and why not *always* use them?
 - Selection Bias
 - RCTs are the "gold standard"
 - RCTs deal with unobserved covariates

An Example...

- "Parachute use to prevent death and major trauma related to gravitational challenge: a systematic review of RCTs" BMJ, December 2003.
- Objective: To determine if parachutes are effective in preventing trauma and death
- Results: No RCTs found on parachute use. Studies of free fall do not show 100% mortality.
- Conclusion: "The effectiveness of parachutes has not been subjected to rigorous evaluation using RCTs. [Some] criticize the adoption of interventions evaluated using only observational data. Everyone might benefit if the radical protagonists...organized and participated in a double blind, randomized, placebo-controlled, crossover trial of the parachute." 4

The Problem with Observational Studies: Selection Bias

- What is selection bias?
 - Those who are in the "treatment" group are not the same as those who get the "control" group
- Uneven baseline covariate distributions
- Need to address this before making valid inferences

Simple Illustration

- Mammography for women over 70 years old
 - outcome = early detection of breast cancer
 - treatment = mammography
 - covariate = income
- Assume (hypothetically) that rich women typically get mammography, and poor women typically do not
- Effect of mammography/income confounded
- Does covariate regression address this?

Propensity Score Motivation

- Goal Identify groups that have similar baseline characteristics, then compare outcome of interest by groups
- Cochran (1968) Remove bias by stratifying on confounders (90% reduction with 5 strata)
- Rosenbaum and Rubin (1983) Combine multiple confounders into one measure (propensity score) and use it to stratify

Propensity Score Method

- Calculate the conditional probability, or "propensity," of being in the treatment group (given your covariates)

 propensity = P(treated | covariates)
- Create groups that are similar to each other in their propensity score by sub-sampling
 - Split into percentiles
 - Matching (nearest, logit, or Mahalanobis)
 - Matching with calipers
 - Greedy algorithm (Parsons)
- Analyze using typical statistical techniques

(Some) Applications of PS

- Myocardial Infarction/Coronary Artery Disease
 Numerous articles (Am J Med, NEJM, Ann Thoracic Surg, JAMA, etc.)
- Psychiatry
 - Lavori, et al Stats Med 1988, Neuro 1992, J Psy Res 1998

11

- Mammography
- Posner, et al HSORM 2002
- Domestic Abuse
- Berk, Newton Am Soc Rev 1985
- Income/Tax Statistics
 Czajka, et al J Bus & Econ Stat, 1992
- Gender Bias
 - Zanutto ASA Proceedings, 2002

- Benson, Hartz. NEJM, 2000
- Concato, et al. NEJM, 2000
- Ioannidis, et al. JAMA, 2001

Current Research

- Understanding Selection Bias – Hernán, Hernández-Diaz, Robins (Epidemiology, 2004)
- Polychotomous Outcomes (Dose-Response)
 Imbens (Biometrika, 2000)
 - Mental Health Services Foster (Medical Care, 2003)
 Imai and Van Dyk (JASA, 2004)
- Matching to Multiple Controls – Stuart and Rubin (in progress)
- Missing Data
- D'Agostino, Rubin, Others via EM, ECM algorithms

13

• Drop-out prior to completion of trial

Polychotomous Propensity Scores Example: Respite Analysis

- Ongoing Research
 - w/ Boston Health Care for the Homeless
- Respite unit takes homeless patients not ready to return to streets after hospitalization

 Treatment groups: respite, home, AMA
- Outcome = 90-day hospital readmission
- Assignment to respite likely associated with patient characteristics, thus we need to consider dealing with selection bias

Selection Bias Susceptibility

- All variables associated with exposure (respite vs. AMA vs. home) [X² p < .05]
 - Age (young, middle, old)
 - Race (White, Black, Other)
 - Alcohol Use (yes/no)
 - Drug Use (yes/no)
 - Comorbidity (DCG RR <.5, .5-1.5, >1.5)
 - Length of Stay (short, medium, long)
- Many ways of showing or testing covariate balance (Love, JSM 2002) 17

Methods: Two Logistic Regressions

- Calculate the logistic regression equation for the propensity of being in respite:
 - 1. P(Respite | Respite or AMA)
 - 2. P(Respite | Respite or Home)
- Apply these equations to produce two propensity scores for each observation
- Use this two-dimensional vector to quasirandomize using cluster analysis

20

Weighted Regression

- Weighted by the ratio of the largest sample size in that cluster, divided by the sample size in that treatment group
- Weights are then standardized to equal total sample size (default in SAS)
- Each treatment group is given equal weight in the final analysis

21

Example of Weight Calculation

		cluster 1		
	Home	AMA	Respite	
sample size	15	3	1	← Total=19 (samp size)
total weight	15	15	15	← Maximum Samp Size
weight/obs	1	5	15	← Weight/sample size
reduced wt	0.422	2.111	6.333	← 19/45 * weight/obs
weighted total	6.333	6.333	6.333	← Total=19, equal wts

Similar calculations can be done in other clusters

22

 Results: Comparing Methods

 0.61

 0.61

 0.61

 0.61

 0.61

 0.61

 1.09

 0.60

 0.60

 0.56

 1.47

Which Method to Use?

- Sample size potentially too small with subsampling
- Randomization can produce inconsistent results
- Weighted method produces consistent results with more precision

25

Propensity Score Simulations Goals

- Understand conditions for which propensity scores are needed
- Assess what goes wrong when models are incorrectly specified

- Demonstrate that stratification helps
 - Understand what regression does and doesn't do

roar	OR _{mam}
roar	
regi	2.65
w/PS	2.66
regr	3.61
w/PS	2.69
r	w/PS regr w/PS y when

No PS	PS
2.65	2.66
2.81	2.70
3.17	2.78

Simulations:							
Strength of Propensity Score Model							
		No PS	c (PS)	w/ PS			
	Quartic 1	2.73	0.55	2.70			
	Quartic 2	2.79	0.65	2.72			
	Quartic 3	2.95	0.78	2.76			
	Quartic 4	3.03	0.84	2.78			
	Quartic 5	3.17	0.92	2.78			
Conclusion 1: The stronger the predictive ability of the propensity model, the more susceptible to selection bias							
Conclusion 2: Using the c-statistic from the propensity score model may be better than looking at the bivariate distributions to assess the need for propensity score methods ⁴⁰							

Thank You!

- Arlene Ash, PhD Thesis Advisor
 Director, Health Care Research Unit, BMC
- L. Adrienne Cupples, PhD – Chair, Dept of Biostatistics, BUSPH