A Précis of Key Types of Social Network Analyses and Recent Applications Involving Physician Networks

James O’Malley, Ph.D.
Geisel Medical School at Dartmouth
April 20, 2018

Funding

P01 AG 0309301
U01 AG 046830

Acknowledgements

Erika Moen, Julie Bynum,
Andrea Austin, Gouri
Chakraborti, Jon Skinner
Outline

1. Introduction to social networks and social network analyses
 • Three key general types of problems in networks

2. Example 1: Accounting for variation in whether use of implantable cardiac defibrillators (ICDs) is within guidelines

3. Example 2: Modeling the inter-hospital diffusion in adoption of capability to implant ICDs
A social network consists of one or more sets of actors—also known as “units,” “nodes,” or “vertices”—together with the possibly directed relationships or social ties among them.
Components of a social network

• **Actors:**
 - Individual persons (e.g., patients or clinicians)
 - Organizations (e.g., hospitals)
 - Health states (e.g., diseases)
 - Work products (e.g., academic papers)

• **Social ties:**
 - Communication
 - Influence
 - Trust or affect (e.g., friendship)
 - Affiliations (e.g., co-authors)

• **Attributes:**
 - Actors, relationships, or both
Layers of Networks in Medicine

Barabási (New England Journal of Medicine 2007)
Spread of Obesity in Framingham Heart Study (Christakis and Fowler, 2007)
Social network of physicians in a Boston health clinic

Spring embedder algorithm determines positions of actors (Fruchterman and Reingold 1991)

Network of Hospitals in Two Adjourning Health Referral Regions (Moen et al, 2015)

Gary, IN (181) – blue
South Bend, IN (187) – green

Edges: Thickness reflects # cardiovascular disease patients treated at both hospitals by at least one physician
Biological network
(genes as nodes, shared proteins reflect edges)

Gene network

Adapted from: Goh, Cusick, Valle, Childs, Vidal & Barabási (PNAS 2007)
Human Disease Network
(health phenotypes as nodes; edges reflect shared genes)

Adapted from: Goh, Cusick, Valle, Childs, Vidal & Barabási (PNAS 2007)
Three “Important” Types of Social Network Problems

I. Do features of social networks correlate with health outcome variables of interest?
 - Multiple networks
 - Example: do network characteristics of a health care organization and the network positions of providers caring for a patient within the system correlate with utilization, quality and cost of care?

II. Do physicians influence one another, leading to diffusion of medical ideas/habits/practices?
 - Example: diffusion of use of medical treatments across physicians
 - Long history of work (Coleman, 1957, 1966)

III. What factors affect the structure of a network and the formation/dissolution of relationships?
 - Examples: similarity of personal characteristics or institutional training (homophily), reinforcement of relationships (e.g., triadic closure)
Theoretical framework and scope of ongoing network research at Dartmouth

Care utilization
Clinical guideline adherence
Diffusion/Adoption of new treatments/technologies

Physician network Patient outcome

Communication
Coordination
Influence
Referral

Detection and diagnosis
Treatment strategy
Disease management

4/20/2018 James O'Malley, Ph.D.
• Use network science and social network statistical methods to determine whether physician networks and network positions of physicians or hospitals within them are determinants of health outcome variables.

• For each network or actor within, generate summary measures of their features that are used as predictors of health utilization variables.

Example of Problem Type I: Multiple Networks
Measurement of the **physician network**

<table>
<thead>
<tr>
<th>Method</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey</td>
<td>Direct measure</td>
<td>Time intensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generalizability issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Health topic-specific</td>
</tr>
<tr>
<td>RFID tags</td>
<td>Direct measure (interaction/contact)</td>
<td>Participation decline over study period</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extensive staff commitment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Battery life issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generalizability issues</td>
</tr>
<tr>
<td>Administrative data on patient-sharing</td>
<td>Inclusive of all physicians</td>
<td>Indirect measure of relationship</td>
</tr>
<tr>
<td></td>
<td>Data already exist</td>
<td></td>
</tr>
</tbody>
</table>
Measurement of the network of physician professional ties from claims data

Patients’ medical visits during a period of time:

Patient – physician complexities
- Multiple encounters
- Different medical reasons for encounters
- Varying importance of encounters

Physician – physician complexities
- Multiple overlapping patients
- Different patient medical conditions
- Different level of care requirements across patients

Overlap suggests professional relationship between A and B
Construction of network from Medicare claims

Patients with relevant condition/status

Physician (color denotes hospital)

Adjacency matrix of weighted edges between physicians (shared patients)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Sum 2x2 quadrants to get network with hospitals as nodes
Hospital-Level Social Network in 2011
(Only Top 25% Degree Hospitals Shown)

Node size corresponds to hospital’s degree
Edge thickness reflects shared patient care

Prepared by Erika Moen
Networks of Physicians in 4 Health Referral Regions (Landon et al 2012, JAMA)

Points are physicians
- Color = hospital affiliation
- Lines are connections with ≥10 shared patients

A

B

C

D

PCP
- Medical Specialist
- Surgical Specialist
- Other Specialist

James O'Malley, Ph.D.
Social network of physicians in a Boston health clinic

Spring embedder algorithm determines positions of actors (Fruchterman and Reingold 1991)

Density – number of edges divided by the maximum possible number of edges

= Degree averaged across nodes

Hospital density and variation in care

• Hospitals with a higher density of physician ties have higher costs and more intensive care (Barnett et al, 2012)
Centralization – the extent to which there is a subgroup of highly central actors in the network

Hospital centralization and variation in care: We have found greater centralization associated with greater utilization
Centralization – the extent to which there is a subgroup of highly central actors in the network

High centralization
Low centralization

Network centralization

Hospital centralization and variation in care: We have found greater centralization associated with greater utilization

Network positional summarization examples

Clustering coefficient

Fraction of connections among neighbors of given actor (e.g., physician). In this example Clust. Coef. = 4/10

Betweenness centrality

Fraction of geodesic (shortest) paths between other actors (e.g., physicians) that pass through given actor; bigger = more central actor

Hospitals with high centrality of primary care physicians have lower costs and care intensity (Barnett et al, 2012)
Transitivity ("A friend of a friend is a friend")

- Sociologists → Triads are an important building block of society
- Triadic clustering is a special form of clustering
- Undirected network: the count of triangles is the basis of transitivity
- Directed network:
 - $4^3 = 64$ states of a triad
 - 16 triad groups that are non-isomorphic; embody multiple sociological constructs
 - The **transitive triad** (shown above for actor A) is perhaps of greatest interest
ICDs use electrical pulses or shocks to control potentially life-threatening ventricular arrhythmias in patients with heart failure.

Surgery is primarily performed by electrophysiologists, cardiologists, and thoracic surgeons.

Disagreement on appropriateness; therapeutic benefit versus quality of life.

Benefits depend on patient characteristics.

High cost of device.
ICD therapy guidelines

Clinical Guidelines ≠ Clinical Practice

1. Ejection fraction ≤35%
2. Patient’s symptoms are NYHA Class II or III
3. At least 40 days post myocardial infarction

A retrospective cohort study found that 22.5% of patients who received ICD therapy do not meet clinical guidelines.

(Al-Khatib et al. JAMA, 2011)
Example 1: Guideline consistency of ICD utilization

Question: Are the within-hospital network importance of the implanting surgeon or the importance of the referring or implanting hospitals in the US hospital network associated with ICD guideline consistency?

- Network importance measured by degree (but lots of alternatives)
- Outcome measures overuse, but not underuse, of ICD therapy
- Research focuses on patients at hospitals not equipped to perform ICDs as care more likely to be dependent on between-hospital ties for referral
Outcome data development is distinct from development of physician and hospital networks.
Hierarchical model with network positional measures of 3 sources of clinical influence as predictors

- Patient-level logistic regression
- $i = \text{HRR}, j = \text{provider}, k = \text{patient}$
- Five types of network variables
- Lag network-based predictors by a year

\[
\text{logit}(E[\text{InGuide}_{ijk} | \theta_i, \delta_{ij}]) = \beta_0 + \beta_1 \text{Covariates}_{ijk} + \beta_2 \text{ProvPos}_{ij} + \beta_3 \text{ReferralHospPos}_i + \beta_4 \text{ReferralHospStructure}_i + \beta_5 \text{SurgeryHospPos}_i + \beta_6 \text{SurgeryHospStructure}_i + \theta_i + \delta_{ij}
\]

where $\theta_i \sim \text{Normal}(0, \sigma^2)$ and $\delta_{ij} \sim \text{Normal}(0, \tau^2)$
Results: ICD implanting physician

<table>
<thead>
<tr>
<th></th>
<th>Concurrent year analyses</th>
<th>Lagged year analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>ICD implanter (physician)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betweenness centrality</td>
<td>0.81 (0.18, 3.65)</td>
<td>0.785</td>
</tr>
<tr>
<td>Cardiologist</td>
<td>1.77 (1.37, 2.29)</td>
<td><0.001</td>
</tr>
<tr>
<td>Clinical trial count</td>
<td>0.99 (0.95, 1.04)</td>
<td>0.685</td>
</tr>
<tr>
<td>Publication count category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>referent</td>
<td></td>
</tr>
<tr>
<td>Low (1-24)</td>
<td>1.05 (0.91, 1.22)</td>
<td>0.495</td>
</tr>
<tr>
<td>High (>25)</td>
<td>1.09 (0.89, 1.33)</td>
<td>0.408</td>
</tr>
</tbody>
</table>

Results: Patient’s referring hospital

<table>
<thead>
<tr>
<th></th>
<th>Concurrent year analyses</th>
<th>Lagged year analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td>(95% CI)</td>
<td></td>
</tr>
<tr>
<td>Referring hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree</td>
<td>0.49 (0.25, 0.96)</td>
<td>0.037</td>
</tr>
<tr>
<td>Betweenness centrality</td>
<td>1.14 (1.00, 1.30)</td>
<td>0.056</td>
</tr>
<tr>
<td>Urbanicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>referent</td>
<td></td>
</tr>
<tr>
<td>Large town</td>
<td>1.00 (0.85, 1.16)</td>
<td>0.961</td>
</tr>
<tr>
<td>Small town</td>
<td>0.92 (0.76, 1.11)</td>
<td>0.359</td>
</tr>
<tr>
<td>Teaching status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching</td>
<td>0.84 (0.62, 1.13)</td>
<td>0.245</td>
</tr>
</tbody>
</table>

Results: ICD surgery hospital

<table>
<thead>
<tr>
<th></th>
<th>Concurrent year analyses</th>
<th></th>
<th>Lagged year analyses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio (95% CI)</td>
<td>p-value</td>
<td>Odds ratio (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>ICD surgery hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree</td>
<td>1.61 (0.98, 2.64)</td>
<td>0.059</td>
<td>1.67 (0.97, 2.89)</td>
<td>0.064</td>
</tr>
<tr>
<td>Betweenness centrality</td>
<td>0.94 (0.89, 1.00)</td>
<td>0.067</td>
<td>0.93 (0.87, 1.00)</td>
<td>0.049</td>
</tr>
<tr>
<td>Urbanicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>referent</td>
<td></td>
<td>referent</td>
<td></td>
</tr>
<tr>
<td>Large town</td>
<td>1.08 (0.76, 1.55)</td>
<td>0.660</td>
<td>1.07 (0.71, 1.60)</td>
<td>0.756</td>
</tr>
<tr>
<td>Small town</td>
<td>1.44 (0.37, 5.67)</td>
<td>0.602</td>
<td>1.24 (0.30, 5.08)</td>
<td>0.764</td>
</tr>
<tr>
<td>Teaching status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching</td>
<td>1.06 (0.88, 1.28)</td>
<td>0.567</td>
<td>1.05 (0.85, 1.30)</td>
<td>0.644</td>
</tr>
</tbody>
</table>

The connectedness of hospitals involved in the referral was associated with guideline adherence

- Patients were more likely to meet guidelines if:
 - Their assigned hospital had fewer connections to other hospitals
 - Their ICD surgery hospital had more connections

Regionalization of specialized ICD services may promote adherence to guidelines

- If referring hospitals have fewer connections (enforcing existing information/referral paths) this could lead to more efficient relationships, improved communication/learning, and thus increased adherence to guidelines
Visualization of “Regionalization”

- Referring hospitals have fewer connections!!!
Many other network measures at multiple levels of aggregation!

- 306 HRRs
 - Density
 - Centralization
 - Degree Assortativity
 - Unipartite Average Clustering
 - Bipartite Average Clustering
 - Number of Physicians
 - ICD-related metrics
 - Total number of ICDs
 - Proportion of evidence-based ICDs

- ~4,000 Hospitals
 - Density
 - Centralization
 - Degree Assortativity
 - Unipartite Average Clustering
 - Bipartite Average Clustering
 - Number of Physicians
 - ICD-related metrics
 - Total number of ICDs
 - Proportion of evidence-based ICDs

- >300,000 Physicians
 - Degree
 - Betweenness Centrality
 - Closeness Centrality
 - Eigenvector Centrality
 - Clustering Coefficient
Problem type 2: Social influence analysis

- **Network defines predictors**
 - Do physicians or hospitals influence one another (``social influence'')
 - Example, adoption of a new medical technology

- **Endogenous peer effects**
 - Does the behavior of peer physician or hospital affect the focal physician’s or hospital’s behavior?

* $Y, X = Y_{peer}, X_{peer}$

Exogenous peer effects Does the treatment received by my peers affect my outcome (above and beyond my treatment)?
Interest in studying peer effects in networks

The Spread of Obesity in a Large Social Network Over 32 Years

Nicholas A. Christakis, M.D., Ph.D., M.P.H., and James H. Fowler, Ph.D.

They used a unique and controversial identification strategy!
Why Estimate Peer Effects?

1. Justify budget-limited interventions to stop spread of bad practices in ICD utilization
 • Intervene (e.g., educate) a fraction of physicians or hospitals
 • Ideally, target hospitals strategically positioned to have the greatest influence on other hospitals

2. Evaluate full effect of an intervention
 • Peer effects measure extent that end up intervening on the untreated
 • Account for spillover effects (Sobel 2006)
 • “Collateral effects” (Christakis 2004)
Micro-level ("Peer-Effect") Diffusion: focal physician behavior regressed on that of their peers

- **Example 1**: Physician peer-to-peer influence of ICD utilization over time
 - **Peer effects**: core, elementary form of diffusion
 - Is there evidence of hospital-hospital influence on ICD capability adoption
 - If so, is modified by structural position in network?
 → Justify selecting certain physicians for limited-budget interventions
 - O’Malley, Moen, Bynum, Austin, Skinner (submitted)

- **Example 2**: Peer effect of another physician’s patient having an adverse reaction following a colonoscopy *(beyond effect of adverse reactions within own patient cohort)*
 - With Keating, Landon, and Onnela (Submitted)
 - Not discussed today
Regression of ICD equipped status

- Let y_{it} denote ICD status ($1 = \text{equipped}, 0 = \text{not-equipped}$) at time t
- Key predictor is the prior year weighted average of y_{it} over the peer hospitals of hospital i
- We used the network strength (number of shared patients) of the edges between the hospitals as weights, W
- Thus, model has the form
 \[
 y_{it} \mid y_{i(t-1)} = j \sim \text{Bernoulli}(p_{it}(j))
 \]
 where \(\text{logit}(p_{it}(j)) = \theta_{ij} + \beta_{1j} x_{i(t-1)} + \beta_{2j} [W_{t-1}Y_{t-1}]_i\)
 and $\theta_{ij} \sim \text{Normal}(\beta_{0j}, \tau_{j}^2)$ is a random effect for hospital and x is a vector of control predictors
Regression of ICD equipped status: Add Network Positional Variables and geographic control

- Full model interacts the weighted average WY with hospital i’s network strength
- Model given by: $logit(p_{it}(j))$

 $$
 = \theta_{ij} + \beta_{1j} x_{i(t-1)} + \beta_{2j}[W_{t-1}Y_{t-1}]_i + \beta_{3j}[G_{t-1}Y_{t-1}]_i \\
 + (\beta_{4j}[W_{t-1}Y_{t-1}]_i + \beta_{5j}[G_{t-1}Y_{t-1}]_i)d_{i(t-1)}
 $$

 where $d_{i(t-1)}$ is the network weighted degree (strength) of physician i at time $t-1$

- G is a weight matrix based on geodesic distances
- In future work, we may add additional ego and peer variables for number of implants and referrals to account for inertia and the extent of the implanting or referring

4/20/2018
ICD Adoption of Equipped Status

ICD Adoption: 306 hrrs, 3720 hospitals, 12716 observations

<table>
<thead>
<tr>
<th>Term</th>
<th>Estimate</th>
<th>z-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lag network strength</td>
<td>-1.593</td>
<td>-2.67</td>
<td>0.008</td>
</tr>
<tr>
<td>Lag peer equipped</td>
<td>-0.391</td>
<td>-1.29</td>
<td>0.198</td>
</tr>
<tr>
<td>Lag peer equipped*network strength</td>
<td>2.295</td>
<td>2.81</td>
<td>0.005</td>
</tr>
<tr>
<td>Lag peer referral</td>
<td>0.268</td>
<td>0.58</td>
<td>0.564</td>
</tr>
<tr>
<td>Lag peer implant</td>
<td>-0.146</td>
<td>-0.58</td>
<td>0.561</td>
</tr>
<tr>
<td>Lag geographic equipped</td>
<td>22.750</td>
<td>4.67</td>
<td>0.000</td>
</tr>
<tr>
<td>Lag geographic referral</td>
<td>-0.607</td>
<td>-4.30</td>
<td>0.000</td>
</tr>
<tr>
<td>Lag geographic implant</td>
<td>-0.059</td>
<td>-1.27</td>
<td>0.204</td>
</tr>
<tr>
<td>Var(hospital, HRR)</td>
<td>1.15 +/- 1.07, 0.49 +/- 0.70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A non-capable hospital with strong connections to peer hospitals who have the capability to implant ICDs is more likely to acquire the capability to implant ICDs
ICD De-adoption: 305 hrrs, 1410 hospitals, 4418 observations

<table>
<thead>
<tr>
<th>Term</th>
<th>Estimate</th>
<th>z-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lag network strength</td>
<td>-1.670</td>
<td>-3.01</td>
<td>0.003</td>
</tr>
<tr>
<td>Lag peer equipped</td>
<td>-1.456</td>
<td>-3.27</td>
<td>0.001</td>
</tr>
<tr>
<td>Lag peer equipped*network strength</td>
<td>2.216</td>
<td>2.75</td>
<td>0.006</td>
</tr>
<tr>
<td>Lag peer referral</td>
<td>-0.055</td>
<td>-0.07</td>
<td>0.943</td>
</tr>
<tr>
<td>Lag peer implant</td>
<td>-0.322</td>
<td>-1.14</td>
<td>0.254</td>
</tr>
<tr>
<td>Lag geographic equipped</td>
<td>-4.753</td>
<td>-1.15</td>
<td>0.248</td>
</tr>
<tr>
<td>Lag geographic referral</td>
<td>-0.042</td>
<td>-0.29</td>
<td>0.773</td>
</tr>
<tr>
<td>Lag geographic implant</td>
<td>-0.029</td>
<td>-0.78</td>
<td>0.433</td>
</tr>
<tr>
<td>Var(hospital, HRR)</td>
<td>0.84 +/- 0.92, 0.00 +/- 0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An ICD capable hospital with strong connections to peer hospitals who have the capability to implant ICDs is more likely to remain ICD capable.
Causality Concerns

• **Homophily**: “Birds of a feather flock together”
 • Individuals with similar behaviors more likely to become friends
 • Physicians who train together have similar treatment preferences and more likely to subsequently work together?
 • Tie-dissolution due to diverging viewpoints or attitudes over time

• **Unmeasured common causes**
 • Unknown peer physicians
 • Regional activities (e.g., marketing campaign)
 • Exposure to marketing or the same supplier of free medical products
Social influence analysis causal challenges

• Overlapping groups of individuals yield the predictor(s) of individuals’ outcomes!
 • Reflection problem (Manski, 1993)
• Statistical analysis challenging if seek causal claim when network not formed at random!
 • Complicated simultaneous equations model can be used but makes strong assumptions
• Longitudinal data helps with identification of causal effects
 • Reverse causality, simultaneity, …
 • Avoids reliance on strong parametric assumptions

Problem Type 3: Analysis of network structure

“Extra Material”

- Observed network is the outcome
- Often only observe network once (cross-sectional data)
 - Longitudinal data now becoming more common
- Are global network properties explained by local configurations or sub-networks?
 - Closed dyads: reciprocity
 - Closed triads: transitivity, 3-cycles, …
- Are individuals with particular characteristics more likely to form ties (homophily, assortative mixing, social selection)?
- Do (latent) communities underlie the network?
- Non-standard and challenging statistical analyses required!
Why Model Relationships?

- Recipe for manipulating the influences to which an individual is exposed
 - Determine factors that reinforce relationships
- Find optimal position in the network to identify actors for which intervention will have maximal impact
 - Optimize interventions on physicians, hospitals, health systems, regions
- Gain insight in how to manipulate health organization into more favorable forms
 - Identify key elements of network structure of the best Accountable Care Organization (ACO) and replicate them!
Some Key Sociological Relationships

Homophily

\[\text{dist}(x_i, x_j) = \text{small} \]

\[\text{I} \quad \text{---} \quad \text{J} \]

Tie more likely

\[\text{dist}(x_i, x_j) = \text{big} \]

\[\text{I} \quad \text{---} \quad \text{J} \]

Tie less likely

Triadic Closure (Transitivity)

\[\text{K} \quad \text{---} \quad \text{I} \quad \text{---} \quad \text{J} \]

I,J tie leads to closure

\[\text{K} \quad \text{---} \quad \text{I} \quad \text{---} \quad \text{J} \]

I,J tie does not lead to closure
Simple Example: Estimate effects of physician homophily on the relationships between physicians within a hospital

Exponential family random graph model (ERGM) of hospital network:

<table>
<thead>
<tr>
<th>Term</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge (overall density of ties)</td>
<td>-0.4238</td>
</tr>
<tr>
<td>Homophily by specialty</td>
<td></td>
</tr>
<tr>
<td>Cardiology</td>
<td>3.42</td>
</tr>
<tr>
<td>Family Practice</td>
<td>-1.39</td>
</tr>
<tr>
<td>Internal Medicine</td>
<td>0.20</td>
</tr>
</tbody>
</table>

*ICD Provider

Change in log-odds of the tie if the physicians are both cardiologists compared to if they have different specialties, conditional on the rest of the network
• Assuming dyadic independence (as in prior slide) allows model for the network to be generated from the model for the dyad
 • Allows logistic regression estimation to be used!
• Dependence between dyads arises whenever the state of one dyad depends on the state of another dyad over and above actor-specific effects
 • Triadic dependence: an edge is more (or less) likely to form if its actors have a common third actor
 • Cannot multiply probability distributions of dyads to generate model for the network!
→ Forced to model whole network simultaneously!
• Moen EL, Bynum JP, Austin AM, Skinner JS, Chakraborti G, O’Malley AJ. Assessing variation in implantable cardioverter defibrillator therapy guideline adherence with physician and hospital patient-sharing networks. Accepted for publication in Medical Care
• An C, Rockmore D, O’Malley AJ: Nationwide Physician Networks determined from CMS’s publically available Medicare data on physicians’ overlap of care for the same patients. Accepted for publication in Statistics in Medicine

• O’Malley AJ, Marsden PV. The Analysis of Social Networks. Health Services and Outcomes Research Methodology 2008, 8, 222-269

• Paul S, Keating NL, Landon BE, O’Malley AJ. Results from using a new dyadic-dependence model to analyze sociocentric physician networks. Social Science & Medicine, 125, 2015, 51-59

• O'Malley AJ, Christakis NA. (2011). Longitudinal Analysis of Large Social Networks: estimating the Effect of Health Traits on changes in Friendship Ties. Statistics in Medicine, 30, 9, 950-964

• Under revision: Viles WD, O’Malley AJ. External Information in Community Detection